If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+6x-6=0
a = 6; b = 6; c = -6;
Δ = b2-4ac
Δ = 62-4·6·(-6)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{5}}{2*6}=\frac{-6-6\sqrt{5}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{5}}{2*6}=\frac{-6+6\sqrt{5}}{12} $
| 1/3w+12=2/3w | | 9c-5=11 | | (6x+44)=(-10x+65) | | V+6/v+3+1=v+7/v+1 | | -12=a/3 | | 0.5h+1/3(h-6)=5/6h+2 | | 50/200=x | | |2x-3|+8=4 | | P=4n-2 | | 5(2x+6)=-4(-5-2×)+3× | | 7/9d=2/3 | | 3(x-3)-8=7(x-1)-4 | | 5/x-2=-1 | | 4+.14x=9 | | 14=2(5+f)-6 | | 4v+7=35 | | 2(x+1)+5=5 | | y+3*45+5+8y-50=180 | | 4+.142857143x=9 | | 2g-3/5(20-3g)=12 | | (2x+5)^2+81=0 | | 8–c=3c–4 | | 7(x-5)=2x-20=5x | | 7x-3x-13=34.36 | | K4-5.2k=3k-2 | | -5n+5(n-7)=-40+5n | | z/5=37/4 | | -111+51p=-35(12p+57 | | -2c+6+3c+7c=27 | | -9k+8=-8k | | X+14+x=48 | | 5x2-13x+6=0 |